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Abstract
Large-scale synthetic research in ancient history is often hindered by the incompatibility of
taxonomies used by different digital datasets. Using the example of enriching the Latin In-
scriptions from the Roman Empire dataset (LIRE), we demonstrate that machine-learning
classification models can bridge the gap between two distinct classification systems and make
comparative study possible. We report on training, testing and application of a machine learn-
ing classification model using inscription categories from the Epigraphic Database Heidelberg
(EDH) to label inscriptions from the Epigraphic Database Claus-Slaby (EDCS). The model
is trained on a labeled set of records included in both sources (N=46,171). Several differ-
ent classification algorithms and parametrizations are explored. The final model is based on
Extremely Randomized Trees algorithm (ET) and employs 10,055 features, based on several
attributes. The final model classifies two thirds of a test dataset with 98% accuracy and 85%
of it with 95% accuracy. After model selection and evaluation, we apply the model on inscrip-
tions covered exclusively by EDCS (N=83,482) in an attempt to adopt one consistent system
of classification for all records within the LIRE dataset.
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1. Introduction

A principal goal of digital scholarship is to produce new insights through the aggregation
and synthesis of many sources (cf. [1] [2] [3] [4] [5] [6] [7]). Our ability to address fun-
damental historical questions, such as the waxing and waning of cities and civilizations,
depends on our capacity to effectively reuse and integrate large evidentiary datasets [8]
[9]. Data integration is a process of transforming datasets that were recorded in dif-
ferent ways into a single unified dataset with analytically comparable observations [10].
Achieving effective integration is often hindered by heterogeneous classification systems
employed by different sources. The Epigraphic Database Heidelberg (EDH) and The
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Epigraphik Datenbank Clauss-Slaby (EDCS) projects, for example, catalogue Latin in-
scriptions from the ancient Mediterranean, but utilize incompatible categories in their
description. These discrepancies need to be systematically resolved before comparative
analysis can proceed. In this paper, we reconcile inscription type categories in these two
sources by training, testing, and applying machine-learning classification models.

2. Material & Methods

2.1. EDH

The Epigraphic Database Heidelberg (EDH) represents a flagship resource for the field of
Latin digital epigraphy. It has been in development for 35 years, providing meticulously
curated content and built with the consideration of open-research needs such as easy
accessibility and reuse [11]. In 2021, the EDH dataset included over 81,000 inscriptions,
offering a balanced distribution of material from the Western and Northern Roman
provinces from the first century BC to the fourth century AD and facilitating quantified
spatio-temporal studies of the Empire [12].

The EDH dataset is programmatically accessible via the public API [13]. Alternatively,
researchers can access the data in raw EpiDoc format, an XML/TEI standard format for
digital publication of inscriptions [14]. An older version of the data is stored at Zenodo
and GitHub archive.

2.2. EDCS

The Epigraphik Datenbank Clauss-Slaby (EDCS) represents the most extensive digital
resource for Latin epigraphy, containing over 500,000 inscriptions collected from printed
publications or other digital sources. EDCS covers the Latin epigraphic production in
the entire Mediterranean with the bulk of data originating from Rome, dated between
the first and fourth centuries AD. Its limitations include no support for programmatic
access and frequent omissions in temporal data as well as other inscription descriptors.
Even after streamlining and data enrichment from available linked sources, the enriched
EDCS dataset contains 29 attributes, compared to 74 attributes in the enriched EDH
dataset. If a researcher can work within these constraints, EDCS offers an unparalleled
spatial and temporal coverage.

2.3. LIRE: combining EDH & EDCS

The LIRE dataset represents an aggregate of the streamlined and enriched EDH and
EDCS datasets (as published on Zenodo). The process of aggregation and filtering
included several steps:

• mapping and deduplication of the records included in both sources, using the
EDH-ID listed in the ‘links’ attribute of EDCS and linked data in the Trismegistos
TexRelations API;
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• filtering for records with valid geospatial data, represented by a pair of coordinates

• filtering for records that fall within the boundaries of the Roman Empire at its
largest extent (under Trajan in AD 117; as delimited by the Pleiades project
shapefile);

• filtering for records containing temporal information in the form of a temporal
interval of creation, expressed in years and stored in attributes ‘not before’ and
‘not after’;

• filtering for records whose temporal interval of creation intersects with the timespan
of the Roman Empire (arbitrarily set to 50 BC through AD 350).

The deduplication and filtering reduced the number of records in the aggregate sub-
stantially: the initial 500,000+ records in EDCS and 81,000+ records in EDH produced
137,305 records that had a valid date and location within the boundaries of the Roman
Empire. The resulting LIRE dataset contained 49,916 inscriptions shared by the EDH
and EDCS, inheriting attributes from both parent collections. In addition, there were
3,907 inscriptions recorded exclusively in EDH and 83,482 inscriptions originating solely
from EDCS, containing set of attributes only from the parent dataset. After combining
the valid unique records from the two sources and appending their attributes, we sought
to integrate the attributes. The following attributes were shared and used consistently
across the two sources, and could be combined in a straightforward way, with data orig-
inating in EDH taking precedence over EDCS whenever the attributes overlapped (cf.
[12]):

• ‘clean text interpretive word’: text of the inscription without the Leiden Conven-
tions for editorial markup of texts;

• ‘not before’: start of the chronological interval (‘terminus post quem’);

• ‘not after’: end of the chronological interval (‘terminus ante quem’);

• ‘geography’: latitude/longitude point coordinates

.
Some of the attributes shared by both sources, however, could not be easily integrated

such as the EDH attribute ‘type of inscription clean’. Type of inscription is an inter-
pretive category that labels the function of an inscription following one of established
domain typologies. Epigraphers classify inscription function after evaluating its content,
context, and physical form during the first publication. As type definitions are broad
and ambiguous, label assignment is subjective and may fluctuate through time.

The ‘type of inscription clean’ column in EDH implements the controlled vocabular-
ies of the EAGLE Europeana Project, a standardized list of inscription types created
in 2013-2015 to tackle the vagueness of existing typologies [15] [16]. Single label per
inscription and effort invested into standardisation were the main reasons we decided to
use EDH as the training dataset for the present model.
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EDCS stores the type of inscription information in an attribute ‘status list’ together
with other information extracted from the text of inscriptions, such as the social status
of persons named in the text, e.g. slaves, priests, or high-ranking officials. We extracted
the type values into a separate ‘inscr type’ attribute. The resulting column, however, was
often multi-valued and followed a different typology than EDH, relying on Latin labels
and referring to non-overlapping categories. The category ‘owner/artist inscription’ in
EDH, for example, corresponds both to ‘tituli possessionis’ and ‘tituli fabricationis’ in
EDCS, hampering dataset-wide comparison. To overcome such limitations and have
a consistent typology applied across the entire dataset, we reclassified the inscriptions
from EDCS using the inscription type categories from EDH.

All scripts used for aggregation, filtering and enriching of the LIRE dataset are avail-
able on GitHub. The repository includes training, evaluation, selection, and application
of the classification model introduced below. The final version of the dataset is also
published via Zenodo [17].

2.4. Classification task

We trained a machine learning classification model using the EDH-labeled subset of
inscriptions with attributes from both sources. From the 49,916 inscriptions which are
shared by both the EDH and EDCS dataset, 46,171 records are properly labeled, i.e.
classified using the ‘type of inscription clean’ attribute in EDH. These were used for
training of the classification model. The remaining 3,745 inscriptions were classified as
‘NULL’ and thus were excluded from the training.

There are 22 unique classification categories among EDH labels. Their distribution is
highly imbalanced (see Table 4). The three most common categories in the training set
are ‘epitaph’ (N=21,520) ‘votive inscription’ (N=11,728), and ‘owner/artist inscription’
(N=3,340). The three least common are ‘assignation inscription’ (N=15), ‘calendar’
(N=10), and ‘adnuntiatio’ (N=1).

For a preliminary model selection, we compared outcomes of several supervised ma-
chine learning algorithms commonly used for document classification [18], namely:

• Logistic Regression (LR) [19]

• Support-vector Machine (SVM)[20] [18]

• Random Forests (RF) [21] [18]

• Extremely Randomized Trees (ET)[22]

All the algorithms have been implemented using Python 3 [23] and the Scikit-learn
library [24], using standardized recipes based on [25].

2.5. Features extraction and selection

For training of the models, we combined features extracted from several different EDCS
attributes, namely:

https://github.com/sdam-au/LIRE_ETL/releases/tag/chr2021


• ‘status list’, including information about the inscription category according to
EDCS combined with other metadata (‘status/titulorum distributio’ in EDCS)

• ‘Material’, containing information about the predominant material or medium on
which the inscription is found

• ‘clean text interpretive word’, text of the inscription without the Leiden Conven-
tions for editorial markup of texts, see [12]

The content of the three attributes was extracted independently, preprocessed, and
then combined together into a ‘bag-of-words’ model to feed a tfidf vectorizer [26].
Underscore was used to treat any multi-word feature as one-word feature (e.g. ‘tit-
uli fabricationis’ instead of ‘tituli fabricationis’). The text of the inscriptions in the
attribute ‘clean text interpretive word’ was treated on the level of continuous bigrams,
since bigrams are suitable to capture the formulaic language of inscriptions. As a result
of this preprocessing, we obtained a list consisting of the following features:

• 37 features based on unique values from the ‘status list’ attribute

• 18 features based on unique values from the ‘Material’ attribute (e.g. ‘lapis’,
‘opus figlinae’, ‘aes’)

• 100, 1,000 or 10,000 features based on a corresponding number of the most frequent
bigrams from the text of the inscriptions (e.g. ‘Dis Manibus’, ‘vixit annos’ or
‘votum solvit’)

3. Results

3.1. Classification model selection and evaluation

To evaluate performance of each model variant, we relied mainly on weighted variant of
the F1 score, referred below as F1(w). The F1(w) score is the harmonic mean of Precision
(proportion of every observation predicted to be positive that is actually positive) and
Recall (proportion of every positive observation that is truly positive). The weighted
variant of the F1(w) score metric, which is consistently reported below, takes into account
label imbalances: for each label, the average value of both metrics is weighted by the
number of true instances. In some cases, we also report accuracy, which equals to the
proportion of correctly classified records, what makes it very intuitive. But it has to be
taken with reservation here, since it does not take into account class imbalances.

For a preliminary model evaluation, we explored different combinations of the above
mentioned feature groups and trained and tested different models on a subset of 5000
labeled records (80 % for training and 20 % for testing, using stratified k-fold cross-
validation method). For instance, using the 37 features based on the ‘status list’ at-
tribute only, LR resulted in F1(w)=0.724. The performance of the model slightly im-
proved when we added 18 features based on the ‘Material’ attribute (F1(w)=0.734);
but the model improved substantially when we included the bigrams, from F1(w)=0.786
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Table 1
Classification model selection (training set N=4000)

classifier C n estimators avg. F1(w)

LR 1 0.808297
LR 1000 0.831937
LR 10000 0.830611
SVM 1 0.310482
SVM 1000 0.760049
SVM 10000 0.828478
RF 10 0.815809
RF 100 0.825325
RF 1000 0.826737
ET 10 0.822891
ET 100 0.831064
ET 1000 0.830801

for the 100 most frequent bigrams up to F1(w)=0.832 for the 10,000 most frequent bi-
grams (the reported F1(w) is an average based on 5 stratified cross-fold validation tests).
Thus, for the subsequent model selection we employed the features set including 10,000
bigrams.

Table 1 shows the differences in performance of the above introduced classification
algorithms trained on a subset of 4,000 randomly chosen inscriptions and the above
specified features set. In the case of LR and SVM, we tested different settings of the C
parameter, which stands for inverse regularization strength. In the case of RF and ET,
we explored several different values for the number of estimators. We see that the best
results are achieved by LR (C=1000) and ET (n estimators=100).

Drawing on these results, we continued with LR and ET only and trained them on
the full dataset. In this setting, ET significantly outperforms LR, with F1(w)=0.878
over F1(w)=0.867 (the reported F1(w) is an average based on 10 stratified cross-fold
validation tests). On the basis of these results, we continued with the ET model which
we also saved for future reuse.

3.2. Probabilities and precision table

Each prediction of the model is accompanied by probability on scale 0-1, expressing a
level of certainty concerning the predicted classification category. The resulting proba-
bilities might be used to formulate thresholds under which the classification will not be
accepted. In Table 2, we see that 96 % of inscriptions in the test dataset were classified
with probability equal to- or higher than 0.4 and that this classification was correct in
more than 90 % of cases (see the ‘accuracy’ score column). Further, approximately 85
% of inscriptions have been classified with probability equal to or higher than 0.6. From
these more than 95 % was classified correctly. These are important observations, which
might be used later on when we apply the model upon unlabeled data, where we can
expect comparable ratios between threshold values, proportions of covered inscriptions,



Table 2
Classification model test results

threshold (≥) proportion N F1(w) accuracy

0.40 0.96 4448 0.897102 0.905800
0.45 0.91 4225 0.923481 0.929467
0.50 0.89 4123 0.935463 0.940092
0.55 0.87 4027 0.945704 0.949839
0.60 0.85 3936 0.952090 0.955539
0.65 0.83 3853 0.957309 0.960550
0.70 0.81 3755 0.962801 0.965379
0.75 0.79 3653 0.965969 0.968519
0.80 0.76 3526 0.970297 0.972490
0.85 0.70 3253 0.978090 0.979096
0.90 0.67 3082 0.979371 0.980208
0.95 0.60 2762 0.981634 0.982259

and the extent of correct classifications.
However, before we proceed to apply the model on unlabeled data, we have to evaluate

the performance of the model with respect to individual categories. For that purpose,
we generated a precision table in Figure 1, where we see the model’s accuracy with
respect to 10 most common categories. We see that the accuracy differs from category to
category. In case of 4 categories (‘epitaph’, ‘votive inscription’, ‘mile-/leaguestone’, and
‘defixio’) the model correctly classifies 98 % or more records. For instance, it correctly
classifies all 18 instances of ‘defixio’ in the test set. In the case of other categories, the
performance is much worse: e.g. from 4 instances of ‘list’, 3 are incorrectly classified as
‘epitaph’. The ambiguity of ‘list’ definition in the EAGLE vocabularies likely causes the
inconsistent manual markup in EDH and the poor reclassification performance.

3.3. Classification model application

After tuning, training, and testing the model on labeled data, we proceeded to apply the
model on 83,482 inscriptions which are recorded exclusively in EDCS. Further, employing
the 0.6 probability threshold, we accepted the automatic labels for 82 % of inscriptions
in the dataset. To estimate the proportion of correctly classified inscriptions within
this subset, we generated a random sample of 100 inscriptions. The sample was labeled
manually by two domain experts. The first expert was drawing on the same attributes
as the automatic classifier. In this case, the manually and automatically assigned labels
were in agreement in 94% of cases. Another domain expert manually labeled the data
without taking into consideration the ‘status list’ attribute. In this case, the agreement
with the automatically assigned labels was approximately 88%. Combining this with the
results from the test set, we estimate between 90 and 95 % of the automatically assigned
categories to be correct (see Table 3).

As a result of applying the ET classification model, we enriched the whole LIRE
dataset by adding two new attributes:

https://www.eagle-network.eu/voc/typeins/lod/108.html


Figure 1: Precision table for 10 most common inscription categories (only inscriptions classified with
probability equal to- or higher than 0.6 included.)

• ‘type of inscription auto’, containing either the predicted label or - where available
- the label from ‘type of inscription clean’ as recorded in EDH

• ‘type of inscription auto prob’, expressing the probability on the scale from 0 to 1
(1 is used for datapoints where the ‘type of inscription clean’ from EDH was used)

When we look at the LIRE dataset as a whole, we see that from the 137,305 inscrip-
tions, 117,710 (85 %) are classified in ‘type of inscription auto’ with probability equal
to- or higher than 0.6. In the following overview of LIRE, we use this probability as
a cut-off threshold, under which the automatically assigned categories are not accepted
and the corresponding records are excluded from the cross-category comparison.



Table 3
Classification model main application results

threshold (≥) proportion N

0.40 0.96 80114
0.45 0.87 72302
0.50 0.85 70967
0.55 0.83 69502
0.60 0.82 68226
0.65 0.80 66784
0.70 0.78 65299
0.75 0.76 63790
0.80 0.74 61813
0.85 0.71 59179
0.90 0.68 56699
0.95 0.62 51400

Table 4
Classified dataset overview

inscr. type EDH EDCS inscr. type EDH EDCS

epitaph 22902 52222 label 213 76
votive inscription 12328 3523 boundary inscription 181 233
owner/artist inscription 3851 6726 elogium 135 16
honorific inscription 3089 2511 letter 124 168
building/dedicatory inscription 2699 580 public legal inscription 119 16
mile-/leaguestone 1413 1141 seat inscription 46 9
identification inscription 1182 745 private legal inscription 38 0
acclamation 364 84 prayer 20 3
defixio 273 21 assignation inscription 16 0
list 265 32 calendar 11 3
military diploma 214 117 adnuntiatio 1 0

3.4. Cross-category comparison of the LIRE dataset

Table 4 shows the distribution of individual inscription categories across the aggregated
dataset. The EDH column covers inscriptions for which the category was already avail-
able. Most of them are shared between the two datasets and used for training of the
model. The EDCS column covers inscriptions exclusively from EDCS, to which the
inscription type category was assigned automatically by the model. It contains only
records with assignment probability equal to 0.6 or higher.

In Figure 2 we see the temporal distribution of the six most common types of in-
scriptions, grouped by their original source. However, since many inscriptions are dated
rather vaguely by means of extensive temporal intervals (commonly on a century basis),
an evaluation of temporal trends in the data is far from straightforward. To overcome
this, we employ a Python implementation [27] of a Monte Carlo simulation approach



to temporal uncertainty based on [28]. First, we generate 1,000 time series simulations.
In each simulation, each inscription is randomly dated to a singular year within its in-
terval of creation. Subsequently, these simulations are plotted cumulatively by means
of frequency polygon lines based on 50-year-long time blocks. The width of the result-
ing curve, which changes from time block to time block, reflects the extent of temporal
uncertainty in the underlying data. Adopting this approach, we are able to assess tem-
poral trends in the datasets and to compare the differences in temporal distributions of
individual inscription types. For instance, we see that the temporal distribution of epi-
taphs changes substantially if we use the EDH dataset versus the LIRE dataset, which
contains a larger number of epitaphs inherited from EDCS. It reveals that the spike in
the production of epitaphs in EDH (a) in the second half of the second century AD
disappears once we include the epitaphs from EDCS (c). This trend is only apparent
after the automatic reclassification, as the original classification systems were mutually
incompatible and not yet mapped onto a single ontological system [29].

4. Discussion

Many data collections in small-science disciplines are fragmented among numerous con-
tent silos. Scholars wishing to synthesise these fragments need to ensure their analytical
comparability, specifically column- and value-level consistency. Such consistency has
been achieved in the past through semi-automatic mapping to relevant ontologies (see
tDAR example in [10]) or through loose-coupling (see OpenContext, [30]). The ma-
chine learning applied here sits between the ontology and loose coupling approaches.
With sufficiently large, representative, and well-described training dataset, an algorithm
learns to make interpretive decisions like a trained epigrapher. The classifier here fully-
automatically extends patterns observed in 40,000 inscription labeled records to addi-
tional 80,000 unlabelled records, creating a ‘type of inscription auto’ attribute.

Despite the relatively high accuracy rates reported above, there is still the probability
that every 20th automatically classified inscription is classified erroneously. Imperfec-
tions in the training dataset due to the ambiguity of inscriptions likely contribute. We
can also look to other studies for guidance. Survey pottery specialists, for example,
point to ambiguity surrounding the interpretation of type and chronology in artefacts
that suffer from high wear and fragmentation [31]. Epigraphic monuments are material
remains. We can expect uncertainty to be inevitable in highly fragmented and short
inscriptions.

Finally, when integrating two typologies, the choice will always entail a compromise
that carries with it some limitations. Inspecting the LIRE inscriptions by type across the
long-term in Figure 2(c), most major trends from EDH (Figure 2a) and EDCS (Figure
2b) are preserved (e.g. dominance of epitaphs and votives) with subtle alterations to
trajectories due to the combined data. Detailed labels from EDCS ‘tituli fabricationis’
and ‘tituli possesionis’ have been combined into one overarching category ‘owner/artist
inscription’, which might be a problem if the originals have special value for the next
researcher. The one category that disappears is the ‘tituli christianae’, utilized by EDCS



Figure 2: Temporal distribution of the six most common inscription types in EDH (a), EDCS (b), and
LIRE (c). All three subplots are filtered to display only the records covered by LIRE. (a) Inscription
types as labelled by EDH, one label per inscription; (b) inscription types as labelled by EDCS, where
multiple labels per inscription are allowed; (c) aggregate of manually (EDH) and automatically (EDCS)
classified inscriptions based on the EDH classification system.

but absent from EDH. It was relabelled as ‘epitaph’ in the LIRE dataset, causing a
secondary rise associated with this category around AD 300. This may be a loss for
scholars of Early Christianity, but represents a move towards greater consistency from a
cultural label towards a functional description. While LIRE accomplishes our needs of
comparability, the approach is flexible and the selection of classification can be flipped
around should other scholars need it.
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